A Stochastic Method to Predict the Consequence of Arbitrary Forms of Spike-Timing-Dependent Plasticity

نویسندگان

  • Hideyuki Câteau
  • Tomoki Fukai
چکیده

Synapses in various neural preparations exhibit spike-timing-dependent plasticity (STDP) with a variety of learning window functions. The window functions determine the magnitude and the polarity of synaptic change according to the time difference of pre- and postsynaptic spikes. Numerical experiments revealed that STDP learning with a single-exponential window function resulted in a bimodal distribution of synaptic conductances as a consequence of competition between synapses. A slightly modified window function, however, resulted in a unimodal distribution rather than a bimodal distribution. Since various window functions have been observed in neural preparations, we develop a rigorous mathematical method to calculate the conductance distribution for any given window function. Our method is based on the Fokker-Planck equation to determine the conductance distribution and on the Ornstein-Uhlenbeck process to characterize the membrane potential fluctuations. Demonstrating that our method reproduces the known quantitative results of STDP learning, we apply the method to the type of STDP learning found recently in the CA1 region of the rat hippocampus. We find that this learning can result in nearly optimized competition between synapses. Meanwhile, we find that the type of STDP learning found in the cerebellum-like structure of electric fish can result in all-or-none synapses: either all the synaptic conductances are maximized, or none of them becomes significantly large. Our method also determines the window function that optimizes synaptic competition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules

Spike timing dependent plasticity (STDP) is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in synaptic strength. STDP is often interpreted as the comprehensive learning rule for a synapse - the "first law" of synaptic plasticity. This interpretation is made explicit in theoretical models in which the total plasticity produced by complex spike patter...

متن کامل

Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus.

Various forms of synaptic plasticity, including spike timing-dependent plasticity, can be accounted for by calcium-dependent models of synaptic plasticity. However, recent results in which synaptic plasticity is induced by multi-spike protocols cannot simply be accounted for by linear superposition of plasticity due to spike pairs or by existing calcium-dependent models. In this paper, we show ...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2003